Information management according to BS EN ISO 19650

Guidance Part B

Open data, buildingSMART and COBie

Edition 1

Published by

UK BIM FRAMEWORK
Table of contents

Message from the UK BIM Alliance Chair 2
Acknowledgments 3
About BS EN ISO 19650 4
Abbreviations and acronyms 5
About this guidance document (executive summary) 6
1.0 About open data and buildingSMART 8
   1.1 Context 8
   1.2 Open data 9
   1.3 buildingSMART 9
   1.4 buildingSMART standards and the ISO 19650 series 10
   1.5 Conclusion 11
2.0 Summary 12

List of figures

Figure 1: ISO 19650 guidance framework 5

List of tables

Table 1: Abbreviations and acronyms 6
Message from the UK BIM Alliance Chair

Author: Dr Anne Kemp OBE
Chair - UK BIM Alliance

The UK BIM Framework provides the fundamental step towards digital transformation of the UK’s built environment industry. The Framework is based on the ISO 19650 series, which first developed out of the UK’s former BIM Level 2, but incorporates and anticipates global and future digital perspectives.

The UK BIM Framework embraces and assists in the implementation of the standards for managing information for the whole life of assets of the built environment. The Framework anticipates the potential for integration across portfolios. The Framework provides extensive Guidance which continues to be developed, including the addition of supplementary tools and materials to enable a firm basis for the evolving National Digital Twin Programme.

This Guidance has been developed to help industry to implement the concepts and principles of the ISO 19650 series upon which the UK BIM Framework is based. It has been continually updated to keep track of the publication of the different parts of ISO 19650, and to reflect lessons learnt as further experience is gained in its implementation.

The key parts of ISO 19650 are now all in place, allowing us to realise information management throughout the whole life of built environment assets. It provides for traditional ways of working entailing exchange of information via files, but also caters for shifts towards data exchange. The key is being specific about what information is required and how it is to be delivered. This needs forethought around what should be the “end in mind” and consideration from an organizational, whole life perspective. This then informs the detailed requirements right down to appointment level.

The work behind developing this Guidance has been considerable. I would like to thank Sarah Davidson and David Churcher for their tireless commitment in continuing to bring this work together – I so enjoy working with you both. Secondly, I would like to thank the many authors who have contributed so generously to the writing of the Guidance - and been so patient in the criticisms and changes that have been required of them. Finally, I would like to thank the many people who have spared time to review and feedback on the Guidance - the Focus Groups in particular, but also those who have contacted us separately. Without this feedback we would not be able to incorporate the wide-ranging experience and testing which is occurring around the industry.

We welcome your continued feedback and shared experiences. You can provide this via guidancefeedback@ukbimframework.org.
Acknowledgments

This guidance represents the collaborative efforts of the following people and organizations

Editors
David Churcher  Hitherwood Consulting Ltd
Sarah Davidson  University of Nottingham
Anne Kemp  Atkins

Authors
Emma Hooper  Bond Bryan Digital
Dan Rossiter  British Standards Institution

Contributor
Mo Shana’a  Morta

Production
Centre for Digital Built Britain
About BS EN ISO 19650

The BS EN ISO 19650 series of standards (herein after referred to as the ISO 19650 series) is an international standard of good practice. It defines information management principles and requirements within a broader context of digital transformation in the disciplines and sectors of the built environment (including construction and asset management industries). Its implementation in the UK is supported by UK National Forewords in ISO 19650 Parts 1 and 2, and a UK National Annex in ISO 19650 Part 2.

The ISO 19650 series replaces some of the existing British Standards and Publicly Available Specifications relating to information management using building information modelling (BIM). It is part of a landscape, or ecosystem, of national and international standards supporting information management processes and technical solutions. It considers all information whether it is a construction programme, a record of a meeting, a geometrical model or a contract administration certificate.

Building information modelling (BIM) plays a key part in the management of information because it provides a methodology that helps us to structure information so that technology can process it.

Structuring information using industry standards helps to improve interoperability. This means that information can be joined-up by both people and technology, which then enables us to extract more valuable knowledge from it. Using the same information structures throughout industry generates consistency, repetition and predictability. This brings real efficiency gains for businesses and provides the data architecture for the connected future.

Standards within the ISO 19650 series are available at www.bsigroup.com. Visit www.ukbimframework.org to see how the ISO 19650 standards plus other standards within the UK UK BIM Framework map to the design, build, operate and integrate process.
This guidance includes a number of abbreviations and acronyms as set out in Table 1.

**Table 1: Abbreviations and acronyms**

<table>
<thead>
<tr>
<th>Abbreviation or acronym</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCF</td>
<td>BIM collaboration format</td>
</tr>
<tr>
<td>BIM</td>
<td>Building information modelling</td>
</tr>
<tr>
<td>bSDD</td>
<td>buildingSMART data dictionary</td>
</tr>
<tr>
<td>COBie</td>
<td>Construction operation building information exchange</td>
</tr>
<tr>
<td>IDM</td>
<td>Information delivery manual</td>
</tr>
<tr>
<td>IFC</td>
<td>Industry foundation classes</td>
</tr>
<tr>
<td>MVD</td>
<td>Model view definition</td>
</tr>
</tbody>
</table>
About this guidance document (executive summary)

The guidance framework supports the UK implementation of the ISO 19650 series. This guidance document (guidance B) sits within an overall guidance framework as shown in Figure 1:

Guidance B is written to support the implementation of each published ISO 19650 standard.

Figure 1: ISO 19650 guidance framework
Who is this guidance written for?

This guidance is for people undertaking the information management function on behalf of an appointing party (a client) or a lead appointed party (for example, a project manager, designer or a main contractor).

Who is this guidance of particular interest to and why?

This guidance is of interest to all parties and teams involved in the information generation, delivery and management processes.

Key takeaways

- The formal requirements and recommendations around information management (the ISO 19650 series) were developed with open data at their centre
- Organizations can derive significant improvements in cost, value and operational performance through the use of open shareable asset information
- Data is considered open when it is not restricted to specific software solutions while proprietary data is restricted to specific software solutions. Examples of open data file formats include HTML, PDF, PPTX, MP3, and IFC
- buildingSMART is an international organization that champions open data for asset design, construction and operation. It is behind several solutions (IFC, IDM, MVD, BCF, bSDD) that support people in their use of open data.
- The buildingSMART solutions alongside other open data file formats will help readers to work in accordance with the ISO 19650 series.

As with all guidance supporting the UK BIM Framework, we invite comment and feedback on this guidance B at guidancefeedback@ukbimframework.org
1.0 About open data and buildingSMART

1.1 Context

Innovations around information within the built environment have typically been developed from a software-centric mind-set using proprietary structures and schema. Consequently, these innovations inadvertently introduce barriers hindering the open exchange of information. As identified within Data for the Public Good (2017), using open data gives the UK an annual economic benefit of ~ £8.9bn. This report also recommends further improvements in both the quality and openness of data to enable better collaboration. As such, innovations should start from a common base, utilizing non-proprietary structures.

Throughout a design and construction project, information will pass through multiple software solutions. During these exchanges it is the information, not the software used, that provides value. The software is merely a tool. As we digitally transform the built environment through initiatives such as the UK BIM Framework and National Digital Twin Programme, the tools used by our sector will change, while information needs to remain accessible and interpretable for the whole life of an asset.

Without considering the structure of this information, there is a risk that it will not be interoperable. This may introduce the need for configuration, which could result in additional costs, loss of information quality or degradation. By ensuring that information is structured in an open and consistent manner from the outset of a project, these issues can be mitigated.

It is for this reason that for almost a decade, open data has been cited within UK Government strategies. For example, as part of the UK Government’s BIM Working Party’s Strategy Paper (2011), a key hypothesis was outlined:

**Government as a client can derive significant improvements in cost, value and carbon performance through the use of open shareable asset information.**

Since this initial hypothesis, the formal requirements and recommendations around building information modelling (BIM) and information management have developed, with open data at their centre. The need for open data is acknowledged within the ISO 19650 series. ISO 19650-1, clause 6.1 outlines the principles of the information delivery cycle, stating that information exchanges should be done using open standards whenever possible. This is also reiterated within ISO 19650-2, clause 5.1.6 and the UK-specific national annex.
1.2 Open data

Generally, data produced within software can be categorized as proprietary data or open data. Open data can be defined as:

**Open data**

data available/visible to others and that can be freely used, re-used, re-published and redistributed by anyone¹

Put simply, the ability to read open data is not restricted while proprietary data is restricted to specific software solutions.

For example, this distinction is significant for archiving purposes because it will affect how to record and store information. Assets, including building and infrastructure works, can be designed and constructed for significant lifespans. There is no guarantee that future software solutions will have the ability to access and interpret proprietary information about these assets. Using open data will resolve this issue.

In reality, open data is more prevalent than might be thought. Examples of file formats that utilize open data, known as open formats, include: HTML, PDF, DOCX, XLSX, PPTX, ODT, ODS, ODP, IFC, PNG, GIF, MP3, CSV, and ZIP.

¹ Put simply, the ability to read open data is not restricted while proprietary data is restricted to specific software solutions.
• **BIM Collaboration Format (BCF):** A model-based software-independent communication protocol.

For example, issues raised during spatial coordination, site inspections or snagging could be communicated using the BIM Collaboration Format, as opposed to a lengthy email chain.

• **buildingSMART Data Dictionary (bSDD):** A standard library of general definitions of asset-related objects and their properties. bSDD has been developed following the requirements within ISO 12006-3.

For example, properties required as part of an information requirement could be linked to properties within the buildingSMART Data Dictionary to prevent any ambiguity around the naming of properties or the type of data expected within them.

Links to the requirements and recommendations that constitute these solutions can be accessed from buildingSMART.org

### 1.4 buildingSMART standards and the ISO 19650 series

The buildingSMART solutions support conformity to the ISO 19650 series. For ISO 19650-2 the way this can be accomplished is illustrated in the examples below:

**ISO 19650-2 clause 5.1 Assessment and Need**

**5.1.2 Establish the project’s information requirements.** Using the IFC schema, these requirements could be structured in a machine-interpretable and machine-testable manner.

**5.1.4 Establish the project’s information standard.** Requirements for information exchange within this resource could reference MVDs. An example of an MVD is COBie 2.4.

**5.1.5 Establish the project’s information production methods and procedures.** This resource could use IDMs to articulate methods and procedures.

**5.1.6 Establish the project’s reference information and shared resources.** These resources could be the IFC schema itself, or project information shared as IFC datasets.

**ISO 19650-2 clause 5.2 Invitation to Tender**

**5.2.1 Establish the appointing party’s exchange information requirements.** Using the IFC schema, these requirements could be structured in a machine-interpretable and machine-testable manner.

**ISO 19650-2 clause 5.3 Tender Response**

**5.3.2 Establish the delivery team’s (pre-appointment) BIM execution plan.** Elements of this resource, such as the high-level responsibility matrix and the federation strategy, could utilize the classes within the IFC schema.

**ISO 19650-2 clause 5.4 Appointment**

**5.4.2 Establish the delivery team’s detailed responsibility matrix.** Further development of this resource could utilize classes, property sets and properties within the IFC schema and the buildingSMART Data Dictionary.

**ISO 19650-2 clause 5.5 Mobilization**

**5.5.3 Test the project’s information production methods and procedures.** By using MVDs and IDMs, a measurable and testable methodology and delivery mechanism can be established.

**ISO 19650-2 clause 5.6 Collaborative Production of Information**

**5.6.2 Generate Information.** Information generated could be delivered as IFC datasets. In addition, information generated relating to issues throughout the design process could be exchanged using the BCF.
5.6.3 **Undertake quality assurance check.** The methodology for checking the quality of information could be described as an IDM. The use of the IFC schema and/or IDMs could also support the partial automation of this activity through the establishment of rule-based checking. Such rules could test information against the relevant MVDs.

5.6.4 **Review information and approve for sharing.** The methodology used for reviewing information could be described as an IDM. The use of the IFC schema and/or IDMs could also support the partial automation of this activity through the establishment of rule-based checking. Such rules could test information against the relevant MVDs.

ISO 19650-2 clause 5.7 Information Model Delivery

5.7.2 **Review and authorize the information model and** 5.7.4 **Review and accept the information model.** The methodology used for reviewing information models could be described as an IDM. The use of the IFC schema and/or IDMs could also support the partial automation of this activity through the establishment of rule-based checking. Such rules could test information against the relevant MVDs.

1.5 **Conclusion**

To realize the value of open data, it should be used in a manner that supports organizational activities. The UK has demonstrated its ability to generate economic value by using open data. Within the built environment, the development of the UK BIM Framework is underpinned by an expectation of utilizing open data. The application of open data to support the whole life of an asset in the built environment can be achieved through the use of buildingSMART solutions. These can directly support activities specified within the ISO 19650 series.

When looking at how an organization plans to remain resilient and innovative, it is important to keep both minds and data open.
ISO 19650 guidance B has provided further insight into open data and buildingSMART. It should be referred to by practitioners and those implementing the ISO 19650 series across a project, within an appointment or within an organization.

Please note that the ISO 19650 series is still new, albeit based on former UK standards. As experience of implementing the ISO 19650 series is gained over the coming months and years, this guidance will be updated to reflect both this experience and any comments/feedback received from users. It will also be updated to include guidance about COBie.

Please do let us have your feedback by emailing us at guidancefeedback@ukbimframework.org.

Please also remember that standards within the ISO 19650 series are available at www.bsigroup.com.

Visit www.ukbimframework.org to see how the ISO 19650 standards plus other standards within the UK BIM Framework map to the design, build, operate and integrate process.
The Centre for Digital Built Britain is part of the Construction Innovation Hub programme, funded by UK Research and Innovation through the Industrial Strategy Challenge Fund.